Face
Recognition

B Convolutional Neural
Networks

Designing a lightweight

and efficient Face-
Recognition App

Dr. Muhammad Zeeshan

Collect image Preprocess data,
data - anchor, [amd Dbuild train and e
positive, negative test data

Build Siamese
model

Build face
recognition app

Train model ===d Evaluate model Save model —

Reference

1. Setup

v

Introduction

Siamese Neural Network

Python standard libraries

>
>

os: Directory/file operation

random: Generate random numbers

Python packages

>
>
>
>
>

tensorflow 2.10.0: Machine learning

tensorflow-gpu 2.10.0: Set GPU growth

opencv-python 4.6.0.66: Capture images

matplotlib 3.6.2: Show images for debugging

numpy 1.23.4: Array operation. Already installed with Python

Set GPU growth: Better to have but not required

Create data folder structures

>
>
>

data\anchor
data\positive

data\negative

ITOXxX>MmMmuvmZD

A MmMTU > 0

Siamese Neural Networks for One-shot Image Recognition

Gregory Koch GKOCH @ CS. TORONTO.EDU
Richard Zemel ZEMEL @ CS. TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU @ CS.TORONTO.EDU

Department of Computer Science, University of Toronto. Toronto, Ontario, Canada.

Abstract

The process of learning good features for ma-

chine learning applications can be very compu-

tationally expensive and may prove difficult in \L g,
cases where little data is available. A prototyp-

ical example of this is the one-shot learning set- E

ting, in which we must correctly make predic-

tions given only a single example of each new

class. In this paper, we explore a method for ¢ R
learning siamese neural networks which employ

a unique structure to naturally rank similarity be-

tween inputs. Once a network has been tuned, @ * a I
we can then capitalize on powerful discrimina-

tive features to generalize the predictive power of

the network not just to new data, but to entirely Figure 1. Example of a 20-way one-shot classification task using

new classes from unknown distributions. Using a the Omniglot dataset. The lone test image is shown above the grid
convolutional architecture, we are able to achieve of 20 images representing the possible unseen classes that we can
strong results which exceed those of other deep choose for the test image. These 20 images are our only known
learning models with near state-of-the-art perfor- examples of each of those classes.

mance on one-shot classification tasks.

Neural Network for Image Recognition

» “Siamese Neural Networks for One-shot Image Recognition”
» Gregory Koch, Richard Zemel, Ruslan Salakhutdinov
» Department of Computer Science, University of Toronto, Ontario, Canada

» A Siamese Neural Network (SNN) is a class of neural network architectures
that contain two or more identical sub-networks

» “Identical’ — they have the same configuration with the same parameters and weights

» Parameter updating is mirrored across both sub-networks and it’s used to find
similarities between inputs by comparing its feature vectors

Siamese Neural Network (SNN)

» Siamese neural networks are
composed of 2 identical subnetworks
that output 2 embeddings (vector

representation of input) Siamese

Network

» These embeddings are then used as
inputs to a loss function.

» This loss function is designed to
minimize the distance between similar D
inputs (2 images of 2 faces that belong % ¢ - .
to the same person) and maximize the
distance between dissimilar inputs (2
faces of 2 different people)

Siamese
Network

Siamese Neural Network (SNN)

» We pass two images to SNN, compute distance vector
between features to figure out whether they are same or

not

» Distance layer measures the similarity between the two e - e i
. yer yer ayer
images -

» Similar - output is 1 .
I —
» No similar - output is 0

i2 -

One-shot Learning

» Typically, classification involves fitting a model given many
examples of each class, then using the fit model to make
predictions on many examples of each class

» One-shot learning is an ML-based object classification algorithm
that assesses the similarity and difference between two images

» One-shot learning is a classification task where one example (or a very
small number of examples) is given for each class, that is used to
prepare a model, that in turn must make predictions about many
unknown examples in the future

» One-shot learning for face recognition is achieved by learning a rich
low-dimensional feature representation, called a face embedding

» Embeddings were learned for one-shot learning problems using a
Siamese network

The Process

1. Setup

2. Collect image data — anchor, positive, negative
3. Preprocess data, build train and test data

4. Build Siamese model

Train model
Evaluate model
Save model

Build face recognition app

© © N o O

Reference

Import dependenci
build image datas
(anchor, positiv
negativ

1. Setup

» Python 3.10.8
» Python standard libraries

» os: Directory/file operation

» random: Generate random numbers
» Python packages

» tensorflow 2.10.0: Machine learning

» tensorflow-gpu 2.10.0: Set GPU growth
» Supports GPU accelerated operations via Nvidia CUDA

» opencv-python 4.6.0.66: Capture images

» matplotlib 3.6.2: Show images for debugging

» numpy 1.23.4: Array operation. Already installed with Python
» Set GPU growth: Better to have but not required
» Create data folder structures

» data\anchor

» data\positive

» data\negative

2. Collect image data - anchor, positive, ne

» data\anchor (input image, captured from camera)

» As input images, to compare with positive/negative images

» Collect 300+ images via camera using OpenCV

» Adjust brightness/contrast/saturation/etc. to augment to 3000
» data\positive

» The target images for input image to compare with

» Collect 300+ images via camera using OpenCV

» Adjust brightness/contrast/saturation/etc. to augment to 3000
» data\negative

» The negative images for input image to compare with

» Download from http://vis-www.cs.umass.edu/lfw/

» Image dimensions: 250 x 250 pixel

Two
Streams
of info

Two
Streams
of info

Anchor

Positive

l:{> Model Encoding

- e mm e mm e e e e e e e e e e e e = = = -y

Model Encoding

Model Encoding

Model Encoding

64 channels /
feature maps, _‘
96x96 each

Input image
105x105

Input image (anch
and +ve / -ve image
has been transformed
into a feature vector

64 filters of
10x10 each,
stride 1

64 filters of
2x2 each

Flatten Layer
Input: 256 @ 6x6
Output: 256x6x6=9216

Dense Layer
Input: 9216
Output: 4096

embedding = make_embedding()

embedding.summary()

Model: “"embedding”

Layer {type) Output Shape Param #
input_image (InputLayer) [(None, 1ee, 1ee, 3)] e
conv2d_27 (Conv2D) (None, 91, 91, 64) 19264
max_pooling2d_14 (MaxPooling (None, 46, 46, 64) 8
conv2d_28 (Conv2D) (None, 4@, 48, 128) 4P1536
max_pooling2d_15 (MaxPooling (None, 28, 28, 128) 8
conv2d_29 (Conv2D) {None, 17, 17, 128) 262272
max_pooling2d_16 (MaxPooling (None, 9, 9, 128) e
conv2d_3@ (ConvaD) (None, 6, 6, 256) 524544

flatten_3 (Flatten) (None, 9216{‘———‘_—___,——g,——"’ ~ embedding |
—— '_, -

None, 4@96) 37752832

dense_3 (Dense)

Total params: 38,960,448
Trainable params: 38,968,448
Non-trainable params: @

Preprocess Images, Train a
Test partitions, Siame
Model, Training, Evaluatio

Import tensorflow Dependencies

» from tensorflow.keras.models import Model
» class Model: A model grouping layers into an object with training/inference features

» from tensorflow.keras.layers import Layer, Conv2D, Dense, MaxPooling2D, Input, Flatte

» [E&VEE: Keras layers AP \

Creates custom layers
https://keras.io/api/layers/ \

€ORV2D: 2D convolution layer (e.g. spatial convolution over images) \
This layer creates a convolution kernel that is convolved with the layer input to produce a tensa
If use_bias is True, a bias vector is created and added to the outputs
If activation is not None, it is applied to the outputs as well

Dense:

Densely-connected NN layer

vV Vv vV vV v VvV Yy

Dense implements the operation: output = activation(dot(input, kernel) + bias) where activa
element-wise activation function passed as the activation argument, kernel is a weights matrix create
la Sr and bias is a bias vector created by the layer (only applicable if use_bias is True). These are all
of Dense

» https://www.tensorflow.org/api docs/python/tf/keras/layers/Dense

Import tensorflow dependencies

» from tensorflow.keras.layers import Layer, Conv2D, Dense, MaxPooling2D, Input, Flatten
> MaxPooling2D:
> Max pooling operation for 2D spatial data

» Downsamples the input along its spatial dimensions (height and width) by taking the maximum value
over an input window (of size defined by pool_size) for each channel of the input

» The window is shifted by strides along each dimension
> Input:

» Layer to be used as an entry point into a Network

» Input() is used to instantiate a Keras tensor

>

A Keras tensor is a tensor object from the underlying backend (Theano or TensorFlow), which we
augment with certain attributes that allow us to build a Keras model just by knowing the inputs and
outputs of the model

» In TensorFlow, a _ is a multi-dimensional array. It is an essential data structure used for building
and training deep learning models. Tensors can be of different types such as float, int, string, etc

Import tensorflow dependencies

KERAS FLATTEN
» from tensorflow.keras.layers import Layer, -
Conv2D, Dense, MaxPooling2D, Input, Flatten
» Flatten: e
» Flattens the input. Does not affect the batch size
» Converts matrices into vectors { kevas.ayersfiattent
m—————— —

» from Utils import POS_PATH, NEG_PATH, ANC_PATH, preprocess, L1Dist,
SIAMESE_Model_NAME e

» Python Utils is a collection of small Python functions and classes which make common pa\tterns sh
and easier

It is by no means a complete collection but it has served me quite a bit in the past and | will ke
extending it

Load and Preprocess Images

» tf.data
» The tf.data API is used to build complex input pipelines

» For example, the pipeline for an image model might aggregate data from files in a distributed file
random perturbations to each image, and merge randomly selected images into a batch for training

» tf.data.Dataset

» The tf.data APl introduces a tf.data.Dataset abstraction that represents a sequence of element\s in w
element consists of one or more components \

L

» For example, in an image pipeline, an element might be a single training example, with a pair o
components representing the image and its label

» tf.data.Dataset.list_files()

» Used to create a dataset of all files matching a pattern
» tf.io.read_file()

» Reads the contents of file.

» tf.io.decode_jpeg()
» Decode a JPEG-encoded image to a uint8 tensor.

Load and Preprocess Images

» tf.data.Dataset.zip()

» The tf.data.zip() function is used for creating a dataset by zipping
together a dict, array, or nested structure of Dataset

» data.map()

» TensorFlow map() method of tf.data.Dataset is used to perform different
preprocessing operations e.g., transformationg, normalization etc.

» data.shuffle()

» rearrange/muddle images so that positive and negative images are
mixed up

» Shuffling is important since we need to have a mixed set of samples in
training and testing partitions

3. Preprocess data, build train and test da

» tf.data: Build TensorFlow input pipelines
» Loop through a specified directory and grab images
» Preprocessing
» Resize image to be 100 x 100 x 3
» Scale image to be between 0 and 1
» Create labelled dataset
» (anchor, positive, 1.0): anchor compares with positive, output as 1.0/true
» (anchor, negative, 0.0): anchor compares with negative, output as 0.0/false
» Build train/test data
» Shuffle dataset
» Train data: 70%
» Test data: 30%

Embedding Layers

» An embedding layer is a type of hidden layer in a neural network

» It maps input information from a high-dimensional to a lower-dimensional space
» It allow the network to learn more about the relationship between inputs and to process the data
» Feature mapping pipeline
» Embedding layer is the first layer that processess images
» It converts raw images into a data representation, the data that passes through a siamese NN
» Embedding layer in a CNN forms a feature mapping pipeline
» Types of embedding layers:
» Embedding layer type depends on the NN and the embedding process
» Text embedding
» Image embedding
» Graph embedding and others

Image Embedding

» Image embedding is a technique for representing images
as dense embedding vectors

» These vectors capture some visual features of the image,
and we can use them for tasks such as image
classification, object detection, and similar

» Popular pre-trained CNN that can be used to generate
image embeddings

» NFNets, EfficientNets, ResNets

4. Build Siamese model

> Build embedding layer - Build distance layer (Siames
> Input(100,100,3) - Siameses L1 Distance layer co
» Convolution + ReLU, 64 @ 10 x 10 'input_embedding’ and
» Max-pooling, 64 @ 2 x 2 'validation_embedding’ by ta
» Convolution + ReLU, 128 @ 7 x 7 difference o
, * It performs similarity measure bet
» Max-pooling, 64 @ 2 x 2 g
, 1. anchor and +ve images
» Convolution + ReLU, 128 @ 4 x 4 .
, 2. anchor and -ve images
» Max-pooling, 64 @ 2 x 2 .
» Convolution + RelLU, 256 @ 4 x 4 * Make Siamese model /
» Fully connected + sigmoid Embedding (input_image)

* Embedding (validation_imagg)ﬂ_,,.....,«\

\

- Similarity calculation via distance layer

5. Train model

>

>
>

>

Setup loss and optimizer

» NN tries to minimize loss

» Optimizer performs backpropagation through NN
tf.losses.BinaryCrossentropy()
tf.keras.optimizers.Adam(1e-4) # 0.0001

Establish checkpoints

» Placeholders to reload NN from

5. Train model

» Build train step - defines the processes that take place during training on a
single batch

» Get train data: (anchor, positive/negative, 1.0/0.0)
Forward pass: Get Siamese model output / prediction
Calculate loss (binary cross entropy)

Calculate gradients of weights across the NN

Optimizer back propagate through NN

vV v v v Vv

Calculate updated weights and apply to Siamese model

5. Train model

» Build train loop
» Training step is applied over a single batch
» Training loop applies training step over entire dataset

» Train model

9. Reference

F Tutorial:
222 https://www.youtube.com/watch?v=LKispFFQ5GU

I“II"II Source code:
https://github.com/nicknochnack/FaceRecognition

* Paper: Siamese Neural Networks for One-shot Image
Recognition

