
Face
Recognition

Dr. Muhammad Zeeshan

Convolutional Neural
Networks

Designing a lightweight
and efficient Face-

Recognition App

Agenda

Setup
Collect image
data – anchor,

positive, negative

Preprocess data,
build train and

test data

Build Siamese
model

Train model Evaluate model Save model
Build face

recognition app

Reference

1. Setup

 Introduction

 Siamese Neural Network

 Python standard libraries

 os: Directory/file operation

 random: Generate random numbers

 Python packages

 tensorflow 2.10.0: Machine learning

 tensorflow-gpu 2.10.0: Set GPU growth

 opencv-python 4.6.0.66: Capture images

 matplotlib 3.6.2: Show images for debugging

 numpy 1.23.4: Array operation. Already installed with Python

 Set GPU growth: Better to have but not required

 Create data folder structures

 data\anchor

 data\positive

 data\negative

R
E
S
E
A
R
C
H

P
A
P
E
R

Neural Network for Image Recognition

 “Siamese Neural Networks for One-shot Image Recognition”

 Gregory Koch, Richard Zemel, Ruslan Salakhutdinov

 Department of Computer Science, University of Toronto, Ontario, Canada

 A Siamese Neural Network (SNN) is a class of neural network architectures
that contain two or more identical sub-networks

 “Identical” – they have the same configuration with the same parameters and weights

 Parameter updating is mirrored across both sub-networks and it’s used to find
similarities between inputs by comparing its feature vectors

Siamese Neural Network (SNN)

 Siamese neural networks are
composed of 2 identical subnetworks
that output 2 embeddings (vector
representation of input)

 These embeddings are then used as
inputs to a loss function.

 This loss function is designed to
minimize the distance between similar
inputs (2 images of 2 faces that belong
to the same person) and maximize the
distance between dissimilar inputs (2
faces of 2 different people)

Siamese Neural Network (SNN)

 We pass two images to SNN, compute distance vector
between features to figure out whether they are same or
not

 Distance layer measures the similarity between the two
images

 Similar – output is 1

 No similar – output is 0
i1

i2

One-shot Learning

 Typically, classification involves fitting a model given many
examples of each class, then using the fit model to make
predictions on many examples of each class

 One-shot learning is an ML-based object classification algorithm
that assesses the similarity and difference between two images

 One-shot learning is a classification task where one example (or a very
small number of examples) is given for each class, that is used to
prepare a model, that in turn must make predictions about many
unknown examples in the future

 One-shot learning for face recognition is achieved by learning a rich
low-dimensional feature representation, called a face embedding

 Embeddings were learned for one-shot learning problems using a
Siamese network

The Process

1. Setup

2. Collect image data – anchor, positive, negative

3. Preprocess data, build train and test data

4. Build Siamese model

5. Train model

6. Evaluate model

7. Save model

8. Build face recognition app

9. Reference

Import dependencies,
build image datasets

(anchor, positive,
negative)

1. Setup

 Python 3.10.8

 Python standard libraries

 os: Directory/file operation

 random: Generate random numbers

 Python packages

 tensorflow 2.10.0: Machine learning

 tensorflow-gpu 2.10.0: Set GPU growth

 Supports GPU accelerated operations via Nvidia CUDA

 opencv-python 4.6.0.66: Capture images

 matplotlib 3.6.2: Show images for debugging

 numpy 1.23.4: Array operation. Already installed with Python

 Set GPU growth: Better to have but not required

 Create data folder structures

 data\anchor

 data\positive

 data\negative

2. Collect image data – anchor, positive, negative

 data\anchor (input image, captured from camera)

 As input images, to compare with positive/negative images

 Collect 300+ images via camera using OpenCV

 Adjust brightness/contrast/saturation/etc. to augment to 3000

 data\positive

 The target images for input image to compare with

 Collect 300+ images via camera using OpenCV

 Adjust brightness/contrast/saturation/etc. to augment to 3000

 data\negative

 The negative images for input image to compare with

 Download from http://vis-www.cs.umass.edu/lfw/

 Image dimensions: 250 x 250 pixel

Model Encoding

Model Encoding

Model Encoding

Model Encoding

Anchor

Positive

Anchor

Negative

Distance

Distance

1 (verified)

0 (unverified)

Two
Streams
of info

Two
Streams
of info

Input image
105x105

64 filters of
10x10 each,

stride 1

64 channels /
feature maps,
96x96 each

64 filters of
2x2 each

Input image (anchor
and +ve / -ve image)
has been transformed
into a feature vector

Decision whether
2 images are

similar or different

Flatten Layer
Input: 256 @ 6x6

Output: 256x6x6=9216

Dense Layer
Input: 9216

Output: 4096

This represents output
of one data stream
(anchor/ +ve / -ve)

Output of model or
embedding layer

Preprocess Images, Train and
Test partitions, Siamese

Model, Training, Evaluation

Import tensorflow Dependencies

 from tensorflow.keras.models import Model

 class Model: A model grouping layers into an object with training/inference features

 from tensorflow.keras.layers import Layer, Conv2D, Dense, MaxPooling2D, Input, Flatten

 Layer: Keras layers API

 Creates custom layers

 https://keras.io/api/layers/

 Conv2D: 2D convolution layer (e.g. spatial convolution over images)

 This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs

 If use_bias is True, a bias vector is created and added to the outputs

 If activation is not None, it is applied to the outputs as well

 Dense:

 Densely-connected NN layer

 Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the
element-wise activation function passed as the activation argument, kernel is a weights matrix created by the
layer, and bias is a bias vector created by the layer (only applicable if use_bias is True). These are all attributes
of Dense

 https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense

Import tensorflow dependencies

 from tensorflow.keras.layers import Layer, Conv2D, Dense, MaxPooling2D, Input, Flatten

 MaxPooling2D:

 Max pooling operation for 2D spatial data

 Downsamples the input along its spatial dimensions (height and width) by taking the maximum value
over an input window (of size defined by pool_size) for each channel of the input

 The window is shifted by strides along each dimension

 Input:

 Layer to be used as an entry point into a Network

 Input() is used to instantiate a Keras tensor

 A Keras tensor is a tensor object from the underlying backend (Theano or TensorFlow), which we
augment with certain attributes that allow us to build a Keras model just by knowing the inputs and
outputs of the model

 In TensorFlow, a tensor is a multi-dimensional array. It is an essential data structure used for building
and training deep learning models. Tensors can be of different types such as float, int, string, etc

Import tensorflow dependencies

 from tensorflow.keras.layers import Layer,
Conv2D, Dense, MaxPooling2D, Input, Flatten

 Flatten:

 Flattens the input. Does not affect the batch size

 Converts matrices into vectors

• from Utils import POS_PATH, NEG_PATH, ANC_PATH, preprocess, L1Dist,
SIAMESE_Model_NAME

• Python Utils is a collection of small Python functions and classes which make common patterns shorter
and easier

• It is by no means a complete collection but it has served me quite a bit in the past and I will keep
extending it

Load and Preprocess Images

 tf.data

 The tf.data API is used to build complex input pipelines

 For example, the pipeline for an image model might aggregate data from files in a distributed file system, apply
random perturbations to each image, and merge randomly selected images into a batch for training

 tf.data.Dataset

 The tf.data API introduces a tf.data.Dataset abstraction that represents a sequence of elements, in which each
element consists of one or more components

 For example, in an image pipeline, an element might be a single training example, with a pair of tensor
components representing the image and its label

 tf.data.Dataset.list_files()

 Used to create a dataset of all files matching a pattern

 tf.io.read_file()

Reads the contents of file.
 tf.io.decode_jpeg()

Decode a JPEG-encoded image to a uint8 tensor.

Load and Preprocess Images

 tf.data.Dataset.zip()

 The tf.data.zip() function is used for creating a dataset by zipping
together a dict, array, or nested structure of Dataset

 data.map()

 TensorFlow map() method of tf.data.Dataset is used to perform different
preprocessing operations e.g., transformationg, normalization etc.

 data.shuffle()

 rearrange/muddle images so that positive and negative images are
mixed up

 Shuffling is important since we need to have a mixed set of samples in
training and testing partitions

3. Preprocess data, build train and test data

 tf.data: Build TensorFlow input pipelines

 Loop through a specified directory and grab images

 Preprocessing

 Resize image to be 100 x 100 x 3

 Scale image to be between 0 and 1

 Create labelled dataset

 (anchor, positive, 1.0): anchor compares with positive, output as 1.0/true

 (anchor, negative, 0.0): anchor compares with negative, output as 0.0/false

 Build train/test data

 Shuffle dataset

 Train data: 70%

 Test data: 30%

Embedding Layers

 An embedding layer is a type of hidden layer in a neural network

 It maps input information from a high-dimensional to a lower-dimensional space

 It allow the network to learn more about the relationship between inputs and to process the data more efficiently

 Feature mapping pipeline

 Embedding layer is the first layer that processess images

 It converts raw images into a data representation, the data that passes through a siamese NN

 Embedding layer in a CNN forms a feature mapping pipeline

 Types of embedding layers:

 Embedding layer type depends on the NN and the embedding process

 Text embedding

 Image embedding

 Graph embedding and others

Image Embedding

 Image embedding is a technique for representing images
as dense embedding vectors

 These vectors capture some visual features of the image,
and we can use them for tasks such as image
classification, object detection, and similar

 Popular pre-trained CNN that can be used to generate
image embeddings

 NFNets, EfficientNets, ResNets

4. Build Siamese model

 Build embedding layer

 Input(100,100,3)

 Convolution + ReLU, 64 @ 10 x 10

 Max-pooling, 64 @ 2 x 2

 Convolution + ReLU, 128 @ 7 x 7

 Max-pooling, 64 @ 2 x 2

 Convolution + ReLU, 128 @ 4 x 4

 Max-pooling, 64 @ 2 x 2

 Convolution + ReLU, 256 @ 4 x 4

 Fully connected + sigmoid

• Build distance layer (Siamese L1 distance)
• Siameses L1 Distance layer compares

'input_embedding' and
'validation_embedding’ by taking their
difference

• It performs similarity measure between:

1. anchor and +ve images

2. anchor and –ve images

• Make Siamese model
• Embedding (input_image)

• Embedding (validation_image)

• Similarity calculation via distance layer

5. Train model

 Setup loss and optimizer

 NN tries to minimize loss

 Optimizer performs backpropagation through NN

 tf.losses.BinaryCrossentropy()

 tf.keras.optimizers.Adam(1e-4) # 0.0001

 Establish checkpoints

 Placeholders to reload NN from

5. Train model

 Build train step – defines the processes that take place during training on a
single batch

 Get train data: (anchor, positive/negative, 1.0/0.0)

 Forward pass: Get Siamese model output / prediction

 Calculate loss (binary cross entropy)

 Calculate gradients of weights across the NN

 Optimizer back propagate through NN

 Calculate updated weights and apply to Siamese model

5. Train model

 Build train loop

 Training step is applied over a single batch

 Training loop applies training step over entire dataset

 Train model

9. Reference

Tutorial:
https://www.youtube.com/watch?v=LKispFFQ5GU

Source code:
https://github.com/nicknochnack/FaceRecognition

Paper: Siamese Neural Networks for One-shot Image
Recognition

